\(\int \frac {A+C \cos ^2(c+d x)}{(a+b \cos (c+d x)) \sec ^{\frac {3}{2}}(c+d x)} \, dx\) [1396]

   Optimal result
   Rubi [A] (verified)
   Mathematica [B] (warning: unable to verify)
   Maple [B] (verified)
   Fricas [F]
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 35, antiderivative size = 241 \[ \int \frac {A+C \cos ^2(c+d x)}{(a+b \cos (c+d x)) \sec ^{\frac {3}{2}}(c+d x)} \, dx=\frac {2 \left (5 a^2 C+b^2 (5 A+3 C)\right ) \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{5 b^3 d}-\frac {2 a \left (3 A b^2+\left (3 a^2+b^2\right ) C\right ) \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}}{3 b^4 d}+\frac {2 a^2 \left (A b^2+a^2 C\right ) \sqrt {\cos (c+d x)} \operatorname {EllipticPi}\left (\frac {2 b}{a+b},\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}}{b^4 (a+b) d}+\frac {2 C \sin (c+d x)}{5 b d \sec ^{\frac {3}{2}}(c+d x)}-\frac {2 a C \sin (c+d x)}{3 b^2 d \sqrt {\sec (c+d x)}} \]

[Out]

2/5*C*sin(d*x+c)/b/d/sec(d*x+c)^(3/2)-2/3*a*C*sin(d*x+c)/b^2/d/sec(d*x+c)^(1/2)+2/5*(5*a^2*C+b^2*(5*A+3*C))*(c
os(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))*cos(d*x+c)^(1/2)*sec(d*x+c
)^(1/2)/b^3/d-2/3*a*(3*A*b^2+(3*a^2+b^2)*C)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*
d*x+1/2*c),2^(1/2))*cos(d*x+c)^(1/2)*sec(d*x+c)^(1/2)/b^4/d+2*a^2*(A*b^2+C*a^2)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/c
os(1/2*d*x+1/2*c)*EllipticPi(sin(1/2*d*x+1/2*c),2*b/(a+b),2^(1/2))*cos(d*x+c)^(1/2)*sec(d*x+c)^(1/2)/b^4/(a+b)
/d

Rubi [A] (verified)

Time = 0.97 (sec) , antiderivative size = 241, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.229, Rules used = {4306, 3129, 3128, 3138, 2719, 3081, 2720, 2884} \[ \int \frac {A+C \cos ^2(c+d x)}{(a+b \cos (c+d x)) \sec ^{\frac {3}{2}}(c+d x)} \, dx=-\frac {2 a \left (C \left (3 a^2+b^2\right )+3 A b^2\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 b^4 d}+\frac {2 a^2 \left (a^2 C+A b^2\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \operatorname {EllipticPi}\left (\frac {2 b}{a+b},\frac {1}{2} (c+d x),2\right )}{b^4 d (a+b)}+\frac {2 \left (5 a^2 C+b^2 (5 A+3 C)\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 b^3 d}-\frac {2 a C \sin (c+d x)}{3 b^2 d \sqrt {\sec (c+d x)}}+\frac {2 C \sin (c+d x)}{5 b d \sec ^{\frac {3}{2}}(c+d x)} \]

[In]

Int[(A + C*Cos[c + d*x]^2)/((a + b*Cos[c + d*x])*Sec[c + d*x]^(3/2)),x]

[Out]

(2*(5*a^2*C + b^2*(5*A + 3*C))*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(5*b^3*d) - (2
*a*(3*A*b^2 + (3*a^2 + b^2)*C)*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(3*b^4*d) + (2
*a^2*(A*b^2 + a^2*C)*Sqrt[Cos[c + d*x]]*EllipticPi[(2*b)/(a + b), (c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(b^4*(a
+ b)*d) + (2*C*Sin[c + d*x])/(5*b*d*Sec[c + d*x]^(3/2)) - (2*a*C*Sin[c + d*x])/(3*b^2*d*Sqrt[Sec[c + d*x]])

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rule 2884

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp
[(2/(f*(a + b)*Sqrt[c + d]))*EllipticPi[2*(b/(a + b)), (1/2)*(e - Pi/2 + f*x), 2*(d/(c + d))], x] /; FreeQ[{a,
 b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[c + d, 0]

Rule 3081

Int[(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)]))/((c_.) + (d_.)*sin[
(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[B/d, Int[(a + b*Sin[e + f*x])^m, x], x] - Dist[(B*c - A*d)/d, Int[(a +
 b*Sin[e + f*x])^m/(c + d*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0]
&& NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 3128

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.)*((A_.) + (B_.)
*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-C)*Cos[e + f*x]*(a + b*Sin[e
+ f*x])^m*((c + d*Sin[e + f*x])^(n + 1)/(d*f*(m + n + 2))), x] + Dist[1/(d*(m + n + 2)), Int[(a + b*Sin[e + f*
x])^(m - 1)*(c + d*Sin[e + f*x])^n*Simp[a*A*d*(m + n + 2) + C*(b*c*m + a*d*(n + 1)) + (d*(A*b + a*B)*(m + n +
2) - C*(a*c - b*d*(m + n + 1)))*Sin[e + f*x] + (C*(a*d*m - b*c*(m + 1)) + b*B*d*(m + n + 2))*Sin[e + f*x]^2, x
], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d
^2, 0] && GtQ[m, 0] &&  !(IGtQ[n, 0] && ( !IntegerQ[m] || (EqQ[a, 0] && NeQ[c, 0])))

Rule 3129

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.)*((A_.) + (C_.)
*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-C)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x])^
(n + 1)/(d*f*(m + n + 2))), x] + Dist[1/(d*(m + n + 2)), Int[(a + b*Sin[e + f*x])^(m - 1)*(c + d*Sin[e + f*x])
^n*Simp[a*A*d*(m + n + 2) + C*(b*c*m + a*d*(n + 1)) + (A*b*d*(m + n + 2) - C*(a*c - b*d*(m + n + 1)))*Sin[e +
f*x] + C*(a*d*m - b*c*(m + 1))*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, C, n}, x] && NeQ[b*c
- a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[m, 0] &&  !(IGtQ[n, 0] && ( !IntegerQ[m] || (EqQ[a,
 0] && NeQ[c, 0])))

Rule 3138

Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2)/(Sqrt[(a_.) + (b_.)*sin[(e_.) +
(f_.)*(x_)]]*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])), x_Symbol] :> Dist[C/(b*d), Int[Sqrt[a + b*Sin[e + f*x]]
, x], x] - Dist[1/(b*d), Int[Simp[a*c*C - A*b*d + (b*c*C - b*B*d + a*C*d)*Sin[e + f*x], x]/(Sqrt[a + b*Sin[e +
 f*x]]*(c + d*Sin[e + f*x])), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2
- b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 4306

Int[(u_)*((c_.)*sec[(a_.) + (b_.)*(x_)])^(m_.), x_Symbol] :> Dist[(c*Sec[a + b*x])^m*(c*Cos[a + b*x])^m, Int[A
ctivateTrig[u]/(c*Cos[a + b*x])^m, x], x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownSineIntegrandQ[u,
 x]

Rubi steps \begin{align*} \text {integral}& = \left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {\cos ^{\frac {3}{2}}(c+d x) \left (A+C \cos ^2(c+d x)\right )}{a+b \cos (c+d x)} \, dx \\ & = \frac {2 C \sin (c+d x)}{5 b d \sec ^{\frac {3}{2}}(c+d x)}+\frac {\left (2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {\sqrt {\cos (c+d x)} \left (\frac {3 a C}{2}+\frac {1}{2} b (5 A+3 C) \cos (c+d x)-\frac {5}{2} a C \cos ^2(c+d x)\right )}{a+b \cos (c+d x)} \, dx}{5 b} \\ & = \frac {2 C \sin (c+d x)}{5 b d \sec ^{\frac {3}{2}}(c+d x)}-\frac {2 a C \sin (c+d x)}{3 b^2 d \sqrt {\sec (c+d x)}}+\frac {\left (4 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {-\frac {5 a^2 C}{4}+a b C \cos (c+d x)+\frac {3}{4} \left (5 a^2 C+b^2 (5 A+3 C)\right ) \cos ^2(c+d x)}{\sqrt {\cos (c+d x)} (a+b \cos (c+d x))} \, dx}{15 b^2} \\ & = \frac {2 C \sin (c+d x)}{5 b d \sec ^{\frac {3}{2}}(c+d x)}-\frac {2 a C \sin (c+d x)}{3 b^2 d \sqrt {\sec (c+d x)}}-\frac {\left (4 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {\frac {5}{4} a^2 b C+\frac {5}{4} a \left (3 A b^2+\left (3 a^2+b^2\right ) C\right ) \cos (c+d x)}{\sqrt {\cos (c+d x)} (a+b \cos (c+d x))} \, dx}{15 b^3}+\frac {\left (\left (5 a^2 C+b^2 (5 A+3 C)\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \sqrt {\cos (c+d x)} \, dx}{5 b^3} \\ & = \frac {2 \left (5 a^2 C+b^2 (5 A+3 C)\right ) \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{5 b^3 d}+\frac {2 C \sin (c+d x)}{5 b d \sec ^{\frac {3}{2}}(c+d x)}-\frac {2 a C \sin (c+d x)}{3 b^2 d \sqrt {\sec (c+d x)}}+\frac {\left (a^2 \left (A b^2+a^2 C\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {\cos (c+d x)} (a+b \cos (c+d x))} \, dx}{b^4}-\frac {\left (a \left (3 A b^2+\left (3 a^2+b^2\right ) C\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx}{3 b^4} \\ & = \frac {2 \left (5 a^2 C+b^2 (5 A+3 C)\right ) \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{5 b^3 d}-\frac {2 a \left (3 A b^2+\left (3 a^2+b^2\right ) C\right ) \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}}{3 b^4 d}+\frac {2 a^2 \left (A b^2+a^2 C\right ) \sqrt {\cos (c+d x)} \operatorname {EllipticPi}\left (\frac {2 b}{a+b},\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}}{b^4 (a+b) d}+\frac {2 C \sin (c+d x)}{5 b d \sec ^{\frac {3}{2}}(c+d x)}-\frac {2 a C \sin (c+d x)}{3 b^2 d \sqrt {\sec (c+d x)}} \\ \end{align*}

Mathematica [B] (warning: unable to verify)

Leaf count is larger than twice the leaf count of optimal. \(597\) vs. \(2(241)=482\).

Time = 7.47 (sec) , antiderivative size = 597, normalized size of antiderivative = 2.48 \[ \int \frac {A+C \cos ^2(c+d x)}{(a+b \cos (c+d x)) \sec ^{\frac {3}{2}}(c+d x)} \, dx=\frac {\frac {2 \left (15 A b^2+5 a^2 C+9 b^2 C\right ) \cos ^2(c+d x) \left (\operatorname {EllipticF}\left (\arcsin \left (\sqrt {\sec (c+d x)}\right ),-1\right )-\operatorname {EllipticPi}\left (-\frac {a}{b},\arcsin \left (\sqrt {\sec (c+d x)}\right ),-1\right )\right ) (b+a \sec (c+d x)) \sqrt {1-\sec ^2(c+d x)} \sin (c+d x)}{a (a+b \cos (c+d x)) \left (1-\cos ^2(c+d x)\right )}+\frac {16 a C \cos ^2(c+d x) \operatorname {EllipticPi}\left (-\frac {a}{b},\arcsin \left (\sqrt {\sec (c+d x)}\right ),-1\right ) (b+a \sec (c+d x)) \sqrt {1-\sec ^2(c+d x)} \sin (c+d x)}{(a+b \cos (c+d x)) \left (1-\cos ^2(c+d x)\right )}+\frac {\left (15 A b^2+15 a^2 C+9 b^2 C\right ) \cos (2 (c+d x)) (b+a \sec (c+d x)) \left (-4 a b+4 a b \sec ^2(c+d x)-4 a b E\left (\left .\arcsin \left (\sqrt {\sec (c+d x)}\right )\right |-1\right ) \sqrt {\sec (c+d x)} \sqrt {1-\sec ^2(c+d x)}+2 (2 a-b) b \operatorname {EllipticF}\left (\arcsin \left (\sqrt {\sec (c+d x)}\right ),-1\right ) \sqrt {\sec (c+d x)} \sqrt {1-\sec ^2(c+d x)}-4 a^2 \operatorname {EllipticPi}\left (-\frac {a}{b},\arcsin \left (\sqrt {\sec (c+d x)}\right ),-1\right ) \sqrt {\sec (c+d x)} \sqrt {1-\sec ^2(c+d x)}+2 b^2 \operatorname {EllipticPi}\left (-\frac {a}{b},\arcsin \left (\sqrt {\sec (c+d x)}\right ),-1\right ) \sqrt {\sec (c+d x)} \sqrt {1-\sec ^2(c+d x)}\right ) \sin (c+d x)}{a b^2 (a+b \cos (c+d x)) \left (1-\cos ^2(c+d x)\right ) \sqrt {\sec (c+d x)} \left (2-\sec ^2(c+d x)\right )}}{30 b^2 d}+\frac {\sqrt {\sec (c+d x)} \left (\frac {C \sin (c+d x)}{10 b}-\frac {a C \sin (2 (c+d x))}{3 b^2}+\frac {C \sin (3 (c+d x))}{10 b}\right )}{d} \]

[In]

Integrate[(A + C*Cos[c + d*x]^2)/((a + b*Cos[c + d*x])*Sec[c + d*x]^(3/2)),x]

[Out]

((2*(15*A*b^2 + 5*a^2*C + 9*b^2*C)*Cos[c + d*x]^2*(EllipticF[ArcSin[Sqrt[Sec[c + d*x]]], -1] - EllipticPi[-(a/
b), ArcSin[Sqrt[Sec[c + d*x]]], -1])*(b + a*Sec[c + d*x])*Sqrt[1 - Sec[c + d*x]^2]*Sin[c + d*x])/(a*(a + b*Cos
[c + d*x])*(1 - Cos[c + d*x]^2)) + (16*a*C*Cos[c + d*x]^2*EllipticPi[-(a/b), ArcSin[Sqrt[Sec[c + d*x]]], -1]*(
b + a*Sec[c + d*x])*Sqrt[1 - Sec[c + d*x]^2]*Sin[c + d*x])/((a + b*Cos[c + d*x])*(1 - Cos[c + d*x]^2)) + ((15*
A*b^2 + 15*a^2*C + 9*b^2*C)*Cos[2*(c + d*x)]*(b + a*Sec[c + d*x])*(-4*a*b + 4*a*b*Sec[c + d*x]^2 - 4*a*b*Ellip
ticE[ArcSin[Sqrt[Sec[c + d*x]]], -1]*Sqrt[Sec[c + d*x]]*Sqrt[1 - Sec[c + d*x]^2] + 2*(2*a - b)*b*EllipticF[Arc
Sin[Sqrt[Sec[c + d*x]]], -1]*Sqrt[Sec[c + d*x]]*Sqrt[1 - Sec[c + d*x]^2] - 4*a^2*EllipticPi[-(a/b), ArcSin[Sqr
t[Sec[c + d*x]]], -1]*Sqrt[Sec[c + d*x]]*Sqrt[1 - Sec[c + d*x]^2] + 2*b^2*EllipticPi[-(a/b), ArcSin[Sqrt[Sec[c
 + d*x]]], -1]*Sqrt[Sec[c + d*x]]*Sqrt[1 - Sec[c + d*x]^2])*Sin[c + d*x])/(a*b^2*(a + b*Cos[c + d*x])*(1 - Cos
[c + d*x]^2)*Sqrt[Sec[c + d*x]]*(2 - Sec[c + d*x]^2)))/(30*b^2*d) + (Sqrt[Sec[c + d*x]]*((C*Sin[c + d*x])/(10*
b) - (a*C*Sin[2*(c + d*x)])/(3*b^2) + (C*Sin[3*(c + d*x)])/(10*b)))/d

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(947\) vs. \(2(295)=590\).

Time = 3.52 (sec) , antiderivative size = 948, normalized size of antiderivative = 3.93

method result size
default \(\text {Expression too large to display}\) \(948\)

[In]

int((A+C*cos(d*x+c)^2)/(a+b*cos(d*x+c))/sec(d*x+c)^(3/2),x,method=_RETURNVERBOSE)

[Out]

2/15*((-1+2*cos(1/2*d*x+1/2*c)^2)*sin(1/2*d*x+1/2*c)^2)^(1/2)*((24*C*a*b^3-24*C*b^4)*cos(1/2*d*x+1/2*c)*sin(1/
2*d*x+1/2*c)^6+(20*C*a^2*b^2-44*C*a*b^3+24*C*b^4)*sin(1/2*d*x+1/2*c)^4*cos(1/2*d*x+1/2*c)+(-10*C*a^2*b^2+16*C*
a*b^3-6*C*b^4)*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)+15*A*a^2*b^2*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*
x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-15*a*A*b^3*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d
*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+15*A*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/
2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*a*b^3-15*A*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1
/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*b^4-15*A*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/
2*c)^2-1)^(1/2)*EllipticPi(cos(1/2*d*x+1/2*c),-2*b/(a-b),2^(1/2))*a^2*b^2+15*a^4*C*(sin(1/2*d*x+1/2*c)^2)^(1/2
)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-15*a^3*b*C*(sin(1/2*d*x+1/2*c)^2)^(1/
2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+5*C*a^2*b^2*(sin(1/2*d*x+1/2*c)^2)^(
1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-5*C*a*b^3*(sin(1/2*d*x+1/2*c)^2)^(
1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+15*C*(sin(1/2*d*x+1/2*c)^2)^(1/2)*
(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*a^3*b-15*C*(sin(1/2*d*x+1/2*c)^2)^(1/2)
*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*a^2*b^2+9*C*(sin(1/2*d*x+1/2*c)^2)^(1/
2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*a*b^3-9*C*(sin(1/2*d*x+1/2*c)^2)^(1/
2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*b^4-15*C*(sin(1/2*d*x+1/2*c)^2)^(1/2
)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticPi(cos(1/2*d*x+1/2*c),-2*b/(a-b),2^(1/2))*a^4)/b^4/(a-b)/(-2*sin(1/
2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1/2*d*x+1/2*c)/(-1+2*cos(1/2*d*x+1/2*c)^2)^(1/2)/d

Fricas [F]

\[ \int \frac {A+C \cos ^2(c+d x)}{(a+b \cos (c+d x)) \sec ^{\frac {3}{2}}(c+d x)} \, dx=\int { \frac {C \cos \left (d x + c\right )^{2} + A}{{\left (b \cos \left (d x + c\right ) + a\right )} \sec \left (d x + c\right )^{\frac {3}{2}}} \,d x } \]

[In]

integrate((A+C*cos(d*x+c)^2)/(a+b*cos(d*x+c))/sec(d*x+c)^(3/2),x, algorithm="fricas")

[Out]

integral((C*cos(d*x + c)^2 + A)/((b*cos(d*x + c) + a)*sec(d*x + c)^(3/2)), x)

Sympy [F]

\[ \int \frac {A+C \cos ^2(c+d x)}{(a+b \cos (c+d x)) \sec ^{\frac {3}{2}}(c+d x)} \, dx=\int \frac {A + C \cos ^{2}{\left (c + d x \right )}}{\left (a + b \cos {\left (c + d x \right )}\right ) \sec ^{\frac {3}{2}}{\left (c + d x \right )}}\, dx \]

[In]

integrate((A+C*cos(d*x+c)**2)/(a+b*cos(d*x+c))/sec(d*x+c)**(3/2),x)

[Out]

Integral((A + C*cos(c + d*x)**2)/((a + b*cos(c + d*x))*sec(c + d*x)**(3/2)), x)

Maxima [F]

\[ \int \frac {A+C \cos ^2(c+d x)}{(a+b \cos (c+d x)) \sec ^{\frac {3}{2}}(c+d x)} \, dx=\int { \frac {C \cos \left (d x + c\right )^{2} + A}{{\left (b \cos \left (d x + c\right ) + a\right )} \sec \left (d x + c\right )^{\frac {3}{2}}} \,d x } \]

[In]

integrate((A+C*cos(d*x+c)^2)/(a+b*cos(d*x+c))/sec(d*x+c)^(3/2),x, algorithm="maxima")

[Out]

integrate((C*cos(d*x + c)^2 + A)/((b*cos(d*x + c) + a)*sec(d*x + c)^(3/2)), x)

Giac [F]

\[ \int \frac {A+C \cos ^2(c+d x)}{(a+b \cos (c+d x)) \sec ^{\frac {3}{2}}(c+d x)} \, dx=\int { \frac {C \cos \left (d x + c\right )^{2} + A}{{\left (b \cos \left (d x + c\right ) + a\right )} \sec \left (d x + c\right )^{\frac {3}{2}}} \,d x } \]

[In]

integrate((A+C*cos(d*x+c)^2)/(a+b*cos(d*x+c))/sec(d*x+c)^(3/2),x, algorithm="giac")

[Out]

integrate((C*cos(d*x + c)^2 + A)/((b*cos(d*x + c) + a)*sec(d*x + c)^(3/2)), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {A+C \cos ^2(c+d x)}{(a+b \cos (c+d x)) \sec ^{\frac {3}{2}}(c+d x)} \, dx=\int \frac {C\,{\cos \left (c+d\,x\right )}^2+A}{{\left (\frac {1}{\cos \left (c+d\,x\right )}\right )}^{3/2}\,\left (a+b\,\cos \left (c+d\,x\right )\right )} \,d x \]

[In]

int((A + C*cos(c + d*x)^2)/((1/cos(c + d*x))^(3/2)*(a + b*cos(c + d*x))),x)

[Out]

int((A + C*cos(c + d*x)^2)/((1/cos(c + d*x))^(3/2)*(a + b*cos(c + d*x))), x)